に投稿 コメントを残す

トピック_スペースX、実用段階へ【初稿投稿2020年の記事改定】

こんにちはコウジです。
「スペースX」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

 

今や、SpaceXは、いくつかのロケットのほか、
宇宙船ドラゴンや衛星スターリンク
衛星インターネットアクセスを提供)
を開発している。(Wikipedia)そんな時代。

2020/11/17の日経新聞からトピックスをお伝えします。
米スペースX社の運用する1号機が
15日に打ち上げに成功しました。

日本人宇宙飛行士の野口さんを乗せて
フロリダ州ケネディ宇宙センターから
飛び立ちました。

登場したロケットの名は「クールドラゴン」です。
このロケットはアメリカの実業家イーロン・マスク氏
が設立したスペースXがアメリカ航空宇宙局(NASA)
の支援を受け開発しました。有人輸送の主体を
NASAから民間に移す試みはオバマ政権から始まっていて
コストのかかるスペースシャトルからソビエト製のソユーズ、
そして今回のクールドラゴンへと続きます。

バイデン氏は15日のツイッターで「全ての米国人と日本人と共に
宇宙飛行士の成功を祈る」とコメントしています。
そしていま、2024年にはマスク氏はトランプ氏を応援してます。

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/17_初回投稿
2024/11/02‗改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

本ブログの位置づけ確認と今後の方向性【2024/11/1時点での方針】

私コウジは他ブログでAI関連の考察をしていますが
大変面白く有益であると感じています。

https://www.dirac226.com/

そのブログでは「未来」を意識して今後の社会での
注目技術を掘り下げていこうという意義を感じています。

また、私自身もPythonという新しい言語の優秀さ(使いやすさ)
を実感しながら楽しく作業しています。

反して、本ブログ: nowkouji226.com は積み重ねた
「過去」の物理学の成果を見直すことで各人の理解を深め
意識を高めていきたいという目的があります。

具体的には1年ごとに新しい学者を7名ずつ取りあげて
意義を考え
その間に過去記事を考え直す作業が有益です。
その中で、気になった時代、学者さんは
何度も関連文献を読んで繰り返し考察します。
記載内容を確認します。

以上、
こうした方針で考察を続けますので
今後とも宜しくお願い致します。                       コウジ

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2024/07/31‗初稿投稿
2024/11/01‗改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

に投稿 コメントを残す

【Topic】長瀬産業が東北大と巨大顕微鏡ナノテラスを運用に参画

亜光速で電子を加速

先ず、本記事は科学技術の進展に伴う産業でのトピックです。商社が巨大加速器を使い開発製造機能を強化する異色の取り組みでもあります。日経新聞の2024年9月の記事をきっかけとして記述していきます。

第二次大戦以降にサイクロトロンの技術は進化し、人工元素の生成や素粒子の反応過程の研究で活用されてきました。本記事で注目しているのは2024年4月から仙台で稼働している巨大顕微鏡といえる「ナノテラス」です。

ナノテラスは一周350mの円形装置の中で電子を加速します。単純な高校生レベルの理解でも、速度をもった価電子が磁場の力で加速していく様子が想像できるでしょう。ナノテラスの加速部では亜光速(ほぼ光速度)の電子の束が運動します。更に磁場で振動させることで「非常に強い放射光」が放出されるのです。

(技術詳細は後日補足します。)

メーカー商社の戦略

化学商社大手の長瀬産業がナノテラスに資金を投入して新素材の開発を進めます。(一口)5千万円の加入金を投じて研究を開始しました。メーカー商社(どっちやねんw)として開発製造に挑みます!!一口の加入金で10年間利用します。
【長瀬産業は「メーカー商社」を自称していますが登記上は「卸売業」です。】

巨額の加入金を支払っている長瀬産業は優先的にナノテラスを使う立場にあります。それにせよ巨額の開発投資です。商社なのに凄い、と思います。

構造の変化を動画で

ナノテラスの大きな特徴は連続した変化として現象を把握できる点です。画像を使って連続した現象を見れます。モノが壊れていく過程、物が剥離していく過程を原子サイズの大きさ(レベル)で観察できます。

一例として粉ミルクを圧縮成型する過程では急激に「力をかけにくくなる」変曲点が存在します。その時の個々の粒子の変形状態は今までは可視化出来ませんでした。

また、2ナノのサイズで開発が進む次世代半導体の世界でも活等出来ると期待されています。配線に対しての樹脂コーディング過程をチェックできます。防湿・防塵・耐薬といった特性を維持するためのコーディングをチェックする事で高精度の計測を完成させています。(詳細は特許に関わるので非公開のようです)

ナノテラスは国内で他に類を見ない制度で精度よく短時間で減少を観察できる放射光施設です。 

需要ありきの市場参入

今回の長瀬産業の研究参画では大きな特徴があります。それは売り上げの大半を商社機能で稼いでいく長瀬産業ならではの販売戦略です。グループ外企業との共同研究でのノウハウ・技術が蓄積されると同時に、長瀬産業が販売の中で得ている市場の製品ニーズを長瀬産業が結びつけて開発を進めていけるのです。

いわば「需要ありきのマーケットイン」が出来る事です。すでに顧客との会話の中で利用をしていきたいというニーズが多々あり利用計画が立てられないほどだそうです。

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2024/10/31‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【トピックス】語学関係の習得に関してと、物理学会での英語コミュニケーションについて_10/30改訂

こんにちはコウジです。
「語学関係の習得」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

こんにちはコウジです。「語学関係」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
2022/7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@2023/7/3】
⇒BLLpQ8kta98RLO9【8700@2024/10/30】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

英語にこだわっていた理由

このサイトでは第二外国語として

英語にこだわり、対応英訳を入れていました。

理由は明快で、日本における学術論文は英語で書き、

大学によっては物理のディスカッションも英語で行うからです。

歴史的に英語で記載するやり方が主流です。

私の英語は粗雑ですが何かを相手に伝えたいと

話し続けていることが大事なのです。そして内容修正。 

むろん、学術論文では不要な修辞語やあいさつ文は不要です。

その意味で学術論文は

英語学習の中でも特殊な文章といえるでしょう。

フランス語やドイツ語の魅力

一方で、医学ではドイツ語がつかわれ、古いお医者様は

ドイツ語でカルテを書いていました。関連機器メーカーも

ドイツ系のメーカーが強かった時代もありました。

私のブログの中での登場人物は多国にわたり、必ずしも英語で

議論をしていたか疑問に思える人々が多いです。

アルキメデス・ソクラテスの時代の人々は現地の言葉で話していて

英語で物事を考える土壌はなかったと思えます。

そこで、そんな国も人々のご紹介の際には英語の習得

に関するご紹介は意識して除いていこうと思います。

一方で文末につけている対応英訳は英語圏で

議論をする人が参照できるように残します。

別の考え方をすれば、ドイツ語やフランス語を習得できる

アフリエイトプログラムがあるといいですね。


【スポンサーリンク】

以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/02/09_初版投稿
2024/10/30‗原稿改訂

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【Topics】Indexされない実例|10/29改訂‗本サイトで2022年度からは問題とらえてます

「Indexされない実例」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

本稿はメモです(Noindexは問題です)

明文化できていなかった問題

以前から気になっていて明文化できていなかった問題です。

Googleサーチ・コンソールに対して検索リクエストをした際に

「URL が Google に登録されていません」というメッセージが出て

その後、数か月後にリクエストをしてもやはり同じメッセージ

が出てしまう問題です。私は2020年10月ごろから当サイトを運営していて

ドメインパワーも、そこそこ上がってきているので、今の私が

リクエストを受け付けてもらえないのなら、

最近ブログを立ち上げた人たちは尚更、
この問題に問題を感じている
のではないかと予想されます。

そんな関心からの記録です。

問題は文字数でしょうか。話題なのでしょうか。

具体的なIndexされないページの例

以下に当該メッセージの出た例を記載していき、

何か共通点・法則性が出てきたら纏め直して対応案を作ります。

オレンジに色を変えた部分は改善が出来ています。

ただ、結果的に「インデックスされている」という意味で問題解決

しているだけで「何が悪くてインデックスされないか」という

問題の本質が解決できていません。

デモクリトス・2022/3/22にGoogleへ再依頼⇒4/30にOK
コペルニクス・2022/4/30にGoogleへ再依頼⇒10/15にOK
デカルト・2022/10/15にGoogleへ再依頼⇒10/15にOK
アイザック・バロー・2022/04/01にGoogleへ再依頼⇒10/18にOK
ベルヌーィ・2022/04/06にGoogleへ再依頼⇒10/24にOK
エルステッド・2022/4/19にGoogleへ再依頼⇒11/15にOK
フーコー・2022/4/30にGoogleへ再依頼⇒11/18にOK
メイデンホール・2022/5/10にGoogleへ再依頼⇒11/28にOK
マイケルソン・2022/5/16にGoogleへ再依頼⇒12/3にOK
テスラ・2022/5/21にGoogkeへ再依頼⇒12/8にOK
長岡半太郎・2022/02/24にGoogleへ再依頼⇒5/28にOK
ヒルベルト・2022/06/06にGoogleへ初申請⇒12/14にOK
中村清二・2022/06/01にGoogleへ再依頼⇒12/21にOK
M・ボルン・2022/03/10にGoogleへ再依頼⇒6/10にOK
ピカール・2022/06/12にGoogleへ再依頼⇒’23/1/8にOK
フォン・ノイマン・2022/04/02にGoogleへ再依頼⇒7/3にOK
H.A.ベーテ・2022/7/6にGoogleへ再依頼⇒1/31にOK
エドワード・テラー・2022/7/8にGoogleへ再依頼⇒2/2にOK
ランダウ・2022/7/9にGoogleへ再依頼⇒2/3にOK
竹内均・2022/7/20にGoogleへ再依頼⇒2/14にOK
ムツゴロウ・2022/03/03にGoogleへ再依頼⇒8/5にOK
益川敏英・2022/04/24にGoogleへ再依頼⇒8/8にOK
ホーキング・2022/4/25にGoogleへ再依頼⇒8/9にOK

Indexされない問題の要因と今後の対策

結論として
「インデックスされなくても半年くらいで大丈夫」
です。断言します。

今回のIndexされない問題は、数年来今話題になっている

「Google側のアルゴリズム対応」

が主因であると思われます。AIの活用や情報習得様式が

大きく変化しているなかで、グーグルが対応に追われて、

個々のインデックスの優先順をつけて処理しているだけ、と言えます。

 

もっと言えば(Coolに考えたら)グーグルは昔と変わらないけれども

ネット社会が変わってきていて我々リクエストする側が

問題であると考えるようになってきているとも言えます。

定量的な指標として、検索リクエストしてから検索表示されるまでの時間

が明らかに定量化できる数字で、皆さんは昨今、その数字を問題視します。

私の感覚では「大まかに半年くらい待てば流石にインデックスされる」

と期待できると言えます。(上記実績から、そう判断)

 

状況としては直ぐに変わらないと思えるのでGoogleを超えた所で

X(旧ツイッター)での議題とするとか、

自分のブログから発信する仕組みを作るとかしていきたい

と考えています。

 

【スポンサーリンク】

以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に対しては適時、
改定・訂正を致します。

nowkouji226@gmail.com

2022/02/24_初回投稿
2024/10/29‗改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【Topic‗画期的な成果の米国二位】10/28改訂‗核融合の特許で中国が首位

こんにちはコウジです。
「核融合の特許」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

少し古い日経記事

古新聞を読み返していて面白い記事(2023/2/23分)
を読み返していて気付きました。

日経新聞の関連企業が有力な特許を集計したところ、
関連特許は、中国が首位で、二位米国、四位日本
だということです。未来のエネルギー源を巡る攻防を追いかけます。

脱炭素発電

そもそも、次世代技術である核融合反応は「地上の太陽」と呼ばれ
太陽内部と同じ原理で現象を起こします。

具体的に水素の同位体が衝突する際のエネルギーが核融合で生じます。

従来型の発電と比較して二酸化炭素の排出がないのでエコです。
なにより、今の原子力発電で生じている廃棄物が出ません。

原料は重水素とトリチウムで技術的な難点は次の項目。
①炉の部分を高温にする
②原子単体の制御(衝突の為に制御)
③反応の過程での速度向上

核融合と核分裂の違い

第二次大戦のマンハッタン計画に端を発し、
核の力を利用しようとする取り組みは様々に行われてきました。

アメリカが開発して数年後には旧ソビエト連邦で
同様な原子力爆弾が作られ、平和利用として
原子力発電が各国で進められています。
また電子力潜水艦が1955年の段階で実用化されています。
【参考URL:原研の「原子力の物理」

こうした産・学・軍が一体となった研究の流れで
核開発は進んでいますが、今回は特に中国の動向に関心が集まります。

ロシア同様に共産圏で国を挙げての意思決定の中で
中国での核融合の開発は優先順位が高いです。
今までと大きく状況が違うのは米国主導だった開発が
核融合の場合は中国主導で進む可能性が大きいのです。

(特に以下は私論となります。ご承知おきください。)

日本を含めて西側諸国は昨今の時流で教育や技術開発の点で
弱い点が目立ち、お家芸と言われていたモノ作りでさえも
日々、尻すぼみの状態にあります。対して、中国は国を挙げて
成長の喜びを謳歌していて差は広がるばかりです。

冷酷な現実ですが自覚しなければいけません。
特に、物理学に関わる人はかっての日本の研究水準を
知っている筈です。核融合の分野で今、実際に日本が中国に
追いつけなくなるレベルだと思えます。

別途、中国は半導体技術でも

別の記事(2023/3/7)では先端技術の記事も掲載されていました。
2022年10月の米国の半導体や製造装置の輸出規制で
対立が先鋭化しています。

2023年の2月に開かれた半導体関係の学会:ISSCで採択論文数で
中国が首位となっています。中長期の技術開発力をつけている訳です。

実際に中国のYMTC社が200層以上で製品化をしています。【関連記事
演算処理の世界でも速度向上が目覚ましいです。

日本がんばれ!

話戻って、核融合の関連では
浜松ホトニクスと、ともに共同研究をするトヨタが日本で
核融合の研究を続けています。基礎に近い所での
ジックリとした研究が今とても大事になってきています。
頑張って欲しいと思います。大事な研究です。

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2023/03/10_初稿投稿
2024/10/28_改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介 

AIがライティング【Catchy】
【スポンサーリンク】

に投稿 コメントを残す

【トピックス】記事の相互リンクに対して_10/27改訂‗|人のつながりの大事さを伝えます

こんにちはコウジです。
「記事の相互リンク」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

本記事はブログを運営する上で記載するべき事柄の整理です。
ご関心のない方は読み飛ばしていただいて結構ですが、
ご意見やご要望を頂けたら幸いです。

さて本題。
ブログ内リンクは時代別の物理学者ご紹介を中心に考えます。

自分が研究をしていた時代の原体験を大事にして
夫々の物理学者の足跡を考えていきます。
私だったらどう考えるのだろう?といった風に考えるのではなく
出来るだけ客観的に業績をご紹介する事を目指します。

ただし、読者諸氏が前向きになれる言葉は盛り込みます。
考え方の強制は絶対にしたくありません。

夫々の人物を起点に関連人物へリンクを貼っていく計画です。

アインシュタインのようなタイプの学者でも、
ローレンツやエレンファストと影響を与えあいます。
また、マッハ哲学の影響もご紹介していきたいのです。
そして従軍中のシュヴァルツシルトの論文を世に送り、
評価されていなかったド・ブロイを絶賛したのです。
実のところ、アインシュタインは多くの人と繋がっていて
前向きに物理を押し進めています。
そんな面をご紹介して生きたと思います。

また、引用に対してですが、私は今まで
引用は知財を乱用する気がして控えていました。
今の私の考えでは
「出典もとを明らかにしていたら引用は問題ない」
と考えています。

それだから、例えば書評の形で
(記事を描き上げた後に)その本への引用の形で
リンクをつければブログの読者にも関心が繋がり
本の著者にも有益だと思えてきたのです。

そして、文章の最後に時代別や舞台別の関心を記載して
夫々の物理学者たちの関心・立ち位置を考え直していきます。
読者諸氏もぜひ、それぞれの国での
つながりを考え直して欲しいです。
改めて考え直してください。
そうした方針で私は考えています。

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては
必ず返信・改定をします。

nowkouji226@gmail.com

2023/03/24_初回投稿
2024/10/27‗改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係

電磁気関係
熱統計関連のご紹介
量子力学関係

3/26・日本関係のリンク更新
3/27・フランス関係のリンク更新
3/28・Indexされな記事に対して更新
3/29・舞台別のご紹介の更新
3/30・ひも理論と現代の理解
3/31・時代順のご紹介更新

に投稿 コメントを残す

【トピック】日本での原爆開発と仁科博士10/26改訂

こんにちはコウジです。
「日本での原爆開発」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

2022/7/31(日)の日経新聞よりトピックをお届けいたします。

太平洋戦争中に旧陸軍がすすめていた

原爆開発「二号計画」です。

計画主導者は当時の理化学研究所の仁科博士。

仁科博士の原稿でも触れていますが、

計画遂行のためにサイクロトロンを作り上げましたが、

終戦直後に米軍によって廃棄されています。

仁科博士を「計画の主導者」と表現しましたが

同氏の資料館の資料によると1938年から1947年

にかけてやりとりした手紙のカーボンコピーが同氏の

考え方の移り変わりを伝えていると言われています。

具体的には陸軍に基礎研究を進める資金を求めていく仁科氏が

現在の価格で言うと500万円程度の資金を得て

「核分裂エネルギーの研究」に対して予算を得ていきます。

当時は卓上の理論であった核分裂エネルギーの爆弾への利用が

具体的に進められていくのです。仁科博士の意識としても

「戦時欠くべからざる研究を重点的に推進」という

表現に代わってきています。①お国の為に

何処まで滅私奉公していくかという考えと、

②若い人を兵隊さんとして戦場に送らない為の基礎研究

の間で非常な葛藤があったようにも見えます。

そしてなにより、

戦後になって日本物理学会が核兵器に対して

明確に廃絶のスタンスを貫いていった事実こそ、

仁科氏が弟子に残していった「意志」であると

編集者の青木さんは綴っています。

仁科博士は毅然とスタイルを貫いた先人でした。

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

 

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/09/20_初回投稿
2024/10/26‗改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係
熱統計力学関係

に投稿 コメントを残す

【Topics】量子コンピューターの原理における回路量子電磁力学10/25改訂(特に超伝導共振器)

こんにちはコウジです。
「回路量子電磁力学」の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

理研の中村泰信さんの論文から

最近、中村さんに大変注目していて、そこから話を始めます。
特に最近稼働を始めた量子コンピューターを勉強している中で
私が今まで分かりづらかった情報読み出し機構について
明快に2021年の論文で解説をしています。

ジョセフソン接合

ユーチューブで公開されていますが、
理化学研究所導入の量子コンピュータでは
「100nm~200nmのジョセフソン接合」
を使い量子ビットの回路を作り上げています。

ジョセフソン接合は具体的に超伝導体(例えばAL)
で絶縁体(例えばAL2O3)を挟みます。これを使い
従来型の回路であるLC共鳴回路を発展させていく
事が出来ます。いわば超電導状態で働くLC回路です。
【以下、応用物理‐第90巻より引用(太字部)】

超伝導体と超伝導体の間のトンネル接合であるジョセフソン
接合の寄与により,強い非線形性を導入することができる.
ジョセフソン接合は回路上で非線形なインダクタンス
として振
る舞う.

理化学研究所で導入している量子コンピュータを始めとして
世界中で今開発されているほとんど全ての量子コンピュータ
では回路量子電磁力学の考え方に基づき設計され、
コプレーナ型伝送線路、ミアンダの回路、超電導共振器
といった各種アイディアを応用しています。

超伝導共振器を使うアイディア

【以下、応用物理‐第90巻より引用(太字部)】
量子情報を非調和的な量子ビット回路に蓄えるのではなく,
超伝導共振器に蓄えようという アプローチである.
後者の利点として,ジョセフソン接合を必 要としないため,
電磁場モードが空間中に広がり表面・界面 欠陥の影響を
受けにくい 3 次元的な空洞共振器を用いるなどして,
量子ビットと比べて高い Q 値(=ω/k)すなわち長いコヒーレンス時間
を実現することが容易であることが挙げられる.加えて,
共振器中のデコヒーレンスは光子の損失によるエネルギー緩和
が支配的で位相緩和がほぼ無視できること,また調和振動子特有の
等間隔に並んだ多数のエネルギー準位によって形成される大きな
状態空間を用いた量子誤り訂正符号を実装可能 であることも利点である.
₍中略)
量子ビット状態の非破壊射影読み出し機構として,
こ の回路量子電磁力学のアイデアが使われている.すなわち,
量子ビットにそれとΔだけ離調した読み出し用共振器を結合させ,
量子ビットの状態に応じた読み出し用共振器の共鳴周波 数シフト
(分散シフト~(g^2) /Δ)を,読み出し用マイクロ波パルスの受ける
反射位相の変化として検出することによる
また、もともとの考えは
A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio,
J. Majer, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf
等によって Phys. Rev. Lett. 95, 060501 (2005).にて議論
されていた内容です。中村氏がSQUIDなどと合わせて
全体像を解説してくれている中で紹介されています。
コヒーレンス時間は長いほど良くて、計算量の増加につながり
より複雑なアルゴリズムに対応した計算機を可能にします。
現状での課題は高速化(~100 ns)
・高忠
実度化(>99 %)・周波数多重化(~10ビット)。
(論文中引用55へ,論文中引用56へ).
また、関心のある表現として
「波長オーダで空間的に分布した相互作用が存在する場合」
を考えています。すなわち、波長オーダーをもった波動関数
が存在し、それが巨大原子として存在するのです。
「光と相互作用する超電導回路内での」作用です。
私はこの考えに教えられ、今まで見てきたユーチューブなどでの
量子コンピュータ基盤のパターンが納得出来るようになりました。
共振側の回路でのコヒーレント時間が確保できれば
実用上、量子コンピューターの計算が進められます。
コヒーレンス時間とは量子コンピュータを考えるうえで
非常に大事な概念で、量子的に考察した時の性能指標
と言えます。それはおおよそ0.1ナノ秒程度の
時間を目安に考えて下さい。この時間が
量子コンピュータでの計算では重要となります。
また
コヒーレント時間を私は
「(電源ではなく)情報に対するトランスミッター」といった
イメージで超伝導共振器を考えています。
超伝導共振器に情報を蓄えるのです。
共振を始めた時点で古典力学的な振り子運動がイメージ出来て
離散的な2準位系で|0>|1>という2つの状態(ケット)
が共振していくのです。重ねあわされた量子ビットの完成です。
また時間を作り、
量子コンピューターについて更に考えてみる積りですが、
こうした明快な論文を出来るだけ見つけていきたいです。
時は金なり。ありがたい時間です。
他、参考論文:
東京理科大・髙柳 英明「ナノテクノロジー分野別バーチャルラボ 」

大学教科書・専門書・医学書 専門買取サイト「専門書アカデミー」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/04/14‗初稿投稿
2024/10/25‗改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【Topic_速報】なんと、2024年のノーベル化学賞もAI関連でした

ノーベル化学賞もAI関連

2024年度はノーベル化学賞でもAI関連の人物が受賞をしました。デミス・ハサビス氏(Googleディープマインド)ジョン・ジャンパー氏(Googleディープマインド)、米ワシントン大学のデービット・ベーカー氏が受賞しました。前者の二人は「タンパク質の構造予測」が受賞理由です。ベーカー氏の受賞は「計算でのタンパク質設計」に対しての評価でした。

先日の物理学賞の発表でも物理学の主流と異なる分野の人物の受賞で意外に思われた方も多いと思います。そうした時代なのです。ノーベル化学賞でもAI関連の技術開発(研究?)が評価されました。

タンパク質の構の造予測

ハサビス氏とジャンパー氏は構造予測で成果を出しました。アルフォードと名付けた技術でタンパク質の構造予測をします。数百にのぼるアミノ酸の解析にAIを使い手間暇を大幅に減らしたのです。ハサビス氏は旧ディープマインドの共同創業者でもあります。

Demis Hassabis(デミス・ハサビス)とJohn Jumper(ジョン・ジャンパー)―「タンパク質の構造予測」

Google DeepMindでCEO(再考経営責任者)を務めるDemis Hassabis氏と同社のJohn Jumper氏は、AIを活用したタンパク質の構造予測に大きく貢献しました。彼らが開発したAlphaFoldは、これまで数十年にわたって科学者たちが直面してきた難題、つまりタンパク質の折り畳み問題を解決するための画期的なツールです。タンパク質のアミノ酸配列からその立体構造を予測することは非常に困難とされてきましたが、AlphaFoldはこれを高い精度で達成しました。

ハサビス氏は少年時代は「天才チェス少年」として活躍し、その中で自分の思考が他社とどう違うか考え続け、AIの世界にのめり込んでいきました。その過程で神経学者として研究を続ける時期がありました。その時に人間の脳をまねた情報処理の手法を研究していきました。その成果がAlphaFoldなのです。

具体的には、AlphaFoldはタンパク質の一次配列から三次構造を予測し、これにより薬剤の設計病気の理解に新たな道を開くことになりました。従来の実験的な方法と比べて、予測にかかる時間やコストを大幅に削減でき、これまで予測が困難だったタンパク質の構造も特定できるようになりました。

タンパク質の設計

ベーカ氏は創薬の分野で成果をあげています。ロゼッタフォールドと名付けた技術で医療分野に有効なタンパク質を設計してきたのです。

David Baker(デービット・ベーカー)―「計算でのタンパク質設計」

ワシントン大学のDavid Baker氏は、計算技術を駆使したタンパク質の設計において顕著な業績を挙げました。彼の研究チームは、AIや計算アルゴリズムを利用して、自然界に存在しない新しいタンパク質をデザインする技術を開発しました。これにより、酵素の設計新しい材料の開発医療用タンパク質の創出など、応用可能な分野が飛躍的に広がりました。

具体的には、彼らの技術は、疾患治療や環境に優しい産業プロセスの実現に役立つ新しい酵素を作り出し、これまでにない形で生物学的システムをエンジニアリングすることを可能にしています。従来の実験に頼るアプローチでは不可能だった分子レベルの設計が、計算手法によって可能となり、さまざまな実用的な応用が期待されています。

AIのノーベル化学賞への貢献

2024年のノーベル化学賞は、AI技術が科学に与える影響の大きさを象徴しています。これまで分子生物学や化学の研究は実験に依存していましたが、AIが計算による予測や設計を可能にし、科学的発見のスピードと精度を飛躍的に向上させました。今回の受賞は、科学の最前線でAIが果たす重要な役割を強調するものと言えるでしょう。

最後に懸念

ヒントン氏が懸念点をあげている事は忘れてはいけません。「AIが人間を排除するリスクを懸念している」と危惧感を抱いているのです。ジョークを理解し、常人以上の流暢な会話をこなし、判断力に優れるAIは現実のものです。もはや、チェスは将棋で名人クラスの人物を負かしているのです。そんなAIが人間に不利益を働く思考を作り得るのです。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2024/10/10_初版投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】