The full name is Lev Davidovich Landau. Landau is a well-known Jewish-Russian scientist who may have seen textbooks in Japan. He received the Nobel Prize in Physics in 1962 for his “Theoretical Study of Helium Near Absolute Zero”. Now, Landau is born of a father of oil engineers and a mother of educators.
He understood differential calculus at the age of 12, entered a national university at the age of 14, and he took both physical mathematics and chemistry at the same time. When he earned his bachelor’s degree at the age of 19, he studied quantum electrodynamics, which is an electronic property in an electromagnetic field, at the Leningrad Institute of Physical Engineering. And I was greatly influenced by Bohr’s laboratory in Copenhagen.
Landau’s main achievements
He then collaborated with Dirac Kapitsa in Cambridge to conclude his so-called “Landau diamagnetism” research. Landau then returned to Leningrad after collaborating with Pauli in Zurich.
I mainly described Landau’s happy times, but he was sentenced to jail for criticizing Stalin while he was in a key position at a research institute in Moscow. And he is also in a car accident. He is also reluctantly involved in the production of hydrogen bombs. And he died at the age of 60.
However, Landau’s performance remains unchanged. Quasiparticle-Fermi liquid theory and Ginzburg-Landau theory have made great strides in the world of low-temperature condensate systems.
This main person,Edward Teller, called the father of the hydrogen bomb, confronts Oppenheimer in his later years. Edward Teller was born in Budapest, Hungary, to a lawyer’s father and a four-language mother. Edward Teller’s father, who was of Jewish descent, was forced out of work and emigrated to Hungary, Germany, and the United States. However, I am blessed with good encounters in the academic world. He writes his dissertation under Heisenberg and spends a useful time in Copenhagen, where Bohr was. Under such circumstances, he made many achievements in nuclear physics and molecular physics. The Jahn-Teller effect and the adsorption isotherm of BET are the achievements of Edward Teller.
Manhattan Project and Teller
So,Edward Teller, along with Einstein, urged the US government to study the atomic bomb, and the plan actually goes on. In political terms, Teller, who witnessed the collapse of capitalism during the German era, seemed initially interested in communism. However, when his friend Landau was arrested by the Soviet government, he intensified his anti-communism. His anti-communist ideas and enthusiasm for the development of new weapons are linked. and again,
Teller and Oppenheimer
After that time, the feud between Edward Teller and Oppenheimer began. Edward Teller and Oppenheimer are at the other end of the spectrum, especially when it comes to the use of the atomic bomb as a weapon. Edward Teller was a proponent of atomic bomb development, and Oppenheimer was a denial.
In fact, Edward Teller was at the center of the development of atomic and hydrogen bombs and weapons. He is said to have called the hydrogen bomb “My Baby”. His position has not changed and it is said that he never regretted it throughout his life. Edward Teller went through such a research life.
The book “Traveler” introduced at the beginning is an autobiography of Hideki Yukawa. Hideki Yukawa lives in the same era as Shinichiro Tomonaga. We build relationships that inspire each other and work together on the themes of the times. As you read the biography, you can see that Hideki Yukawa was passionate about physics.
Although quoted in various places, Hideki Yukawa clearly states, “The secret of the idea is obsession.” At first glance, he has worked to unravel mysterious phenomena and extract simple and clear principles.
Hideki Yukawa’s interest
In the first place, Hideki Yukawa’s interest is in the interaction of matter, and the world is completely invisible. He assembles the story with passion.
He focused on the “strong force” that causes the interaction between fine particles other than gravitational and electromagnetic forces. In the days of Hideki Yukawa, Hideki Yukawa unraveled the interaction in atoms with the concept of mesons in the process of developing the idea of the field.
Hideki Yukawa’s idea is the idea of ”particles that carry the field.” In the first place, considering gravity (universal gravitational force), when two mass points exist, the mass points attract each other and the phenomenon is explained.
Contrary to this clear model, the “assuming of a meson with a mass several hundred times that of an electron” was set separately from the observations at that time, and it is said that Bohr and Heisenberg sought scrutiny of the content.
Eventually, Hideki Yukawa received the Nobel Prize, triggered by “Meson Observation” by British physicist C. Powell in 1947. It is a history that makes us feel “the danger of establishing a concept in physics”.
It can be said that it is a theoretical request, but the concept for Tsuji matching must be seriously discussed from various angles. In other words, when you can refine the concept and give a convincing explanation, you can say that you have done a big job.
Hideki Yukawa explained the strong force by assuming a meson as one of the bosons.
Hideki Yukawa Spill Story
Hideki Yukawa’s achievements have been handed down to Japanese physicists, including nuclear research at Kyoto University. As a personal connection, it seems that I was doing research in a branch office of RIKEN in Itabashi, Tokyo, where I spent my childhood. It’s a little out of date, but it’s strange to think he was active in my hometown.
Nobel laureate Shinichiro Tomonaga was also there. Until recently, RIKEN also had a base in Hon-Komagome, and it still has a base near Honda Asaka. If you continue to investigate why, there is a graveyard of Mr. Okochi, one of the founders, at Heirinji Temple in Saitama Prefecture. Knowing such a spiritual aspect of RIKEN, I somehow convinced myself.
Hideki Yukawa also participates in the Russell-Einstein Declaration. I’ve included this related story in my previous blog, but I think the reality of society making catastrophic weapons is a big problem, even if researchers disagree. Whether it’s Einstein, Hideki Yukawa or Asimov, I dream of society gathering wisdom and responding.
Bethe is of Jewish descent, so he has a hard time under the Nazi regime. He was driven out of the country and fled to England to get a job at the University of Manchester. He attends a special UCB (University of California, Berkeley) conference at the invitation of Oppenheimer during World War II. Bethe will oversee the theory department when the development of nuclear weapons begins there and the Los Alamos National Laboratory is established. After the war, Bethe continued to play an important role in the development of the hydrogen bomb as President Truman decided to develop it.
Bethe’s advocated evolution of stars
In addition, I think there are two major achievements of Bethe. One is to point out that a fusion reaction can occur inside a star, and to consider the internal force that balances gravity. When he considered the evolution of stars, he foresaw possible phenomena under ultra-high pressure. Bethe’s thinking is indispensable in the evolutionary process currently being considered. Roughly thinking about the evolution of stars,
“(1) gas and dust gather with universal gravitation, and gradually” cohesion “is formed toward the center, and (2) the mass of the cohesiveness increases steadily. At this time, (3) a nuclear fusion reaction occurs inside the star and the force that spreads outward works, and (4) the force that gathers by universal gravitation and the force that spreads from the inside to the outside by the nuclear reaction are balanced. “
Then, as the weight increases and the evolution of the star progresses, it will emit light as a star, and I think that it will go through the stages of white dwarfs and black holes. Non-shining stars such as Earth and Jupiter are currently in a state where the expansion of nuclear fusion from the inside and the attractive force to the inside are in balance. In addition to the story of stars, Bethe theoretically explained the decay state of atomic nuclei that can occur under ultra-high pressure and ultra-high temperature while explaining various phenomena realized by accelerators, and made new knowledge. bottom.
Bethe and Lamb shift
In addition, Bethe’s other achievement was to rigorously and non-relativistically scrutinize the Lamb shift that leads to quantum electrodynamics, and to perform extremely accurate calculations. Feynman is his disciple in this respect.
Bethe was a great theorist who lived in difficult times. He has received the Nobel Prize for his “his contributions to his theory of nuclear reactions, especially his discoveries of energy generation inside the stars.”
Shinichiro Tomonaga was the translator of the textbook I was using [Dirac’s “Quantum Mechanics”]. Its ancestors follow the flow of the Omura domain (currently in Nagasaki prefecture).
And Shinichiro Tomonaga’s father was a professor of philosophy at Kyoto University. With such a background, Shinichiro Tomonaga teaches at Tokyo University of Education, the predecessor of the current University of Tsukuba, and eventually becomes the president. He was born in Tokyo, raised in Kyoto, and discussed around the world.
Achievements of Shinichiro Tomonaga
The greatest research achievement of Shinichiro Tomonaga is the renormalization theory. There is a reaction of elementary particles that is also expressed in a mysterious schematic diagram called the Feynman diagram, but it explains the mathematical contradiction in the process. Feynman’s path integral also has a mathematical beauty, but Shinichiro Tomonaga’s theory is more intuitive and convincing.
Speaking of taste, it is a matter of taste, but when the Lamb shift is correctly examined for the big problem of divergence and ∞ and the calculation can be done relativistically, the story is connected in an instant and it seems that it was “correct” sensuously. is.
With the understanding of Shinichiro Tomonaga, quantum electrodynamics was organized and particle physics made great progress. Shinichiro Tomonaga also promoted scientific enlightenment for young people before entering university in his later years.
Finally, Shinichiro Tomonaga was in sync with Hideki Yukawa at Kyoto University. Each form was completed by the physics of the time.
Oppenheimer was sometimes called the father of the atomic bomb, but at UCB (University of California, Berkeley), he was also nicknamed Oppenheim by students. Oppenheimer’s life is full of emotions. When thinking about Oppenheimer’s life, the first point to look at is that he also has Jewish blood.
The reality that Hitler focused on and persecuted the Jews as an ethnic group and was hostile to them is an immovable fact. The Jews must have felt a great sense of crisis in the world of being taken to concentration camps. In that sense of crisis, the history of the early 20th century may have been that geniuses grew up and united to create new things. The act of manufacturing weapons is not affirmed in such an era, but the debaters at that time also started talking about the persecution of Jews and introduced the flow to the Manhattan Project, and assembled a story that is easy for the public to understand. Probably.
Jewish physicists
Almost 100 years have passed since then, and I suspect that many people have developed this idea, but I would like to emphasize it again. The characters in the concrete world of physics are Einstein, Stern, Max Born, DJ Baume, E. Pauli, Landau, Feynman,
And this is Oppenheimer. (I can only think of it here now, but I will add it later whenever I come up with it.) The progress of physics at the beginning of this century brought about by such members was rapid. Its progress went beyond physics to engineering, industry, and even the political system.
It can be said that it was in sync with the changes in the social system that began in the Russian Revolution in 1917. It seems that the feeling of obstruction at the beginning of this century was greatly changed by various efforts to overcome it. And it seems that the world, where dissatisfaction with Corona has increased and US-China relations have become tense these days, is approaching a dangerous world. Let’s make rational judgments and remarks by each person. Direction is important now.
Oppenheimer’s interest
Well, in fact, Oppanheimer finally manipulates six words. As a boy, he became interested in mineralogy, mathematics, geology and chemistry, finishing Harvard in three years and studying abroad in Cambridge. From there he goes to the University of Göttingen in theoretical physics and meets Born.
Oppenheimer conducts research under the guidance of Born and jointly achieves achievements such as the Born-Oppenheimer approximation. He then returned to the United States to teach at the California Institute of Technology and UCB, but with the outbreak of World War II, Oppenheimer was appointed as the first director of the Los Alamos National Laboratory. So he developed the atomic bomb. This work changed the power balance of the world and changed the world later.
Oppenheimer in his later years
In his later years, Oppenheimer asked himself what the work he had accomplished and even left a word of regret. It was judged that the development and use of the atomic bomb during the war was necessary in the United States as a country, but in the subsequent era, even if each country did not use the atomic bomb, it would be the target of attack, and diplomacy. The atomic bomb is used as a threatening tool. Oppenheimer saw the invention that led to that as a “sin,” and he even opposed the development of the hydrogen bomb.
Oppenheimer also has another sin (?). Since Oppenheimer’s era was the Cold War era, he was pointed out that he had a connection with the Communist Party since he was a student, and eventually continued to be the target of the Red Scare. He was always under the supervision of the FBI (Federal Bureau of Investigation under the Department of Justice). In 1965, he quietly ended his life at his home in New Jersey because of cancer. Gassho.
Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens’ novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase.
He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is It is said to have been modeled after von Neumann.
Development of atomic bombs and computers
Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.
In particular, von Neumann will participate in the United States’ Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.
Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It’s a good example of how scientists get involved in weapons development. The idea of ”killing a lot of people (efficiently)” and “scientific inquiry” can be instantly replaced.
A word that expresses the idea of von Neumann
I would like to introduce one that remains as a saying. “Thinking is the primary language, Mathematics is a secondary language. Mathematics was built on thought, It’s just one language. “
It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found “order” will be expressed later, and will be fleshed out in various words so that the public can understand it.
Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.
It’s just a coincidence, but C. Powell, Heisenberg, and Sommerfeld have the same birthday. Similarly, Shoji Nishikawa had the same birthday.
By the way, this time I would like to introduce you to Cecil Powell in the United Kingdom. The method of recording the trajectory of elementary particles has been improved. In other words, we adopted the method of directly recording the particle trajectory in Photographic Emulsions. At that time, unknown particles were discovered one after another and various expectations were made, but the observation method was also trial and error. For example, we captured the trajectory of particles flying in a cloud chamber, observed them on a high mountain to overcome the atmospheric attenuation of flying cosmic rays, and used photographic technology. Do you think of Powell’s method from the image of a photograph? I will check further if there is an opportunity.
Observation of pions by Powell
Powell also dispatches research staff to observe and discover the pions predicted by Hideki Yukawa. It has been discovered using the above-mentioned dry plate from a mountain at an altitude of 5000 m in the Andes Mountains in Bolivia for the purpose of observing pions that have a short life after formation and cannot reach the surface of the earth. It can be said that it was a dynamic observation. In addition, we also use balloons to secure altitude. We have obtained results by making various efforts for observation.
He is a Hungarian-born Jew. As I will explain in detail later, Wigner is Paul Dirac’s brother-in-law and the supervisor of Bardeen, the center of the trio of creators of BCS theory. He has a tremendous network of contacts, isn’t he? He also received the 1963 Nobel Prize in Physics for his “discovery of symmetry in the theory of nuclei and elementary particles”. There are many stories that the arrangement of elementary particles focusing on symmetry is effective and would not have progressed without the classification method.
Wigner in Germany
Eugene Wigner worked there after graduating from the current Berlin Institute of Technology, but found it difficult to continue his research on the persecution of Jews in Nazi Germany and went into exile in the United States.
After his exile in the United States, he was a professor of physics at the University of Wisconsin and then a professor of mathematics at Princeton University. Wigner, along with Leo Szilard and Edward Teller, appealed to the US government about the dangers of Nazi Germany developing an atomic bomb.
I think Wigner, who had a past of being ousted from Berlin, was actually analyzing the situation at that time. In other words, he knew the level of German science at the time and understood the weapons that the Nazis had, so it seems that he was strongly aware of the danger of the Nazis developing an atomic bomb. However, for those of us who know the actual history, it is a difficult move. Given the counterattack of the Allied forces with conventional weapons since the Invasion of Normandy, Germany would not have been able to continue to occupy the continent for a long time, albeit excellent. When you think about it now, you are wondering how Western countries will respond to the growing power of China. In any case, the Wigners created the opportunity for Britain and the United States to own the atomic bomb.
Atomic bomb and Wigner
Wigner joined Szilard and Teller jointly in drafting a letter to the president in the name of Einstein, which triggered the development of the American atomic bomb. In addition, he joined the Manhattan Project to develop the atomic bomb as a member.
In his later years Wigner deepened his philosophical tendencies, leaving behind his lecture “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”. His prominent work has influenced many disciplines. Wigner’s sister is also his wife because he invited Dirac to his dining table. It’s a very surprising combination.
Wadachi Kiyoo born in Aichi is father of Miki Wadachi.(whether the name of Miki Wadachi is not familiar with a textbook) Kiyoo Wadachi leaves a footprint for earth science and is famous for meteorology in particular and seismology.
It is said that a study of Kiyoo Wadachi became the hint as for the concept of so-called “magnitude”. Whenever an earthquake gets up afterwards, the concept of the magnitude to express size (size at the epicenter) of the earthquake itself for “the seismic intensity” that is felt to be individual points (is observed) is utilized and is used as a very useful concept. It is used in front of the area. Wadachi continue an advanced study and think about the range from the depth of the seismic center and lead to a concept of the magnitude.
In the first place the doctoral dissertation of Kiyoo Wadachi “Shallow and deep earthquakes” I did it in this.
If look back on a career of Kiyoo Wadachi, Tokyo emperor country University department of science physics subject
After graduating from this, the Central Meteorological Observatory works.
Wadachi acted as Mayor of the sixth meteorological observatory in the meteorological observatory.
Physics is utilized as practical science from the times of Kiyoo Wadachi.
Wadachi applied geophysics to business.
Kiyoo Wadachi played a leading role in the dawn of the weather observation.
In 1960 (the fifth) Chairperson of Science Council of Japan (the 17th) Japan Academy’s director,
Wadachi successively held Saitama University’s president, Japanese environmental association’s chairperson.
As for Kiyoo Wadachi, Conforment of honor is doing the Order of Culture in 1985.