2025年4月12日2025年4月12日に投稿 投稿者 元)新人監督 — コメントを残す量子エネルギー転送の凄さ【エンタングルメントが作り出す不思議な世界】 先ず、本記事は2024年の3月10日の記事を起点としています。福井健人さんによる教育的記事に私も刺激され、考えを発展させます。少しでも理解を進めます。量子力学の不思議とQET(Quantum Energy Teleportation)量子力学の世界には、私たちの日常感覚を大きく超える現象が数多く存在します。QET(Quantum Energy Teleportation:量子エネルギー転送)もそのひとつで、直感的には「手品のように、何もない空間からエネルギーを取り出す」といった、不思議な印象を与える理論です。しかしこれは、あくまで量子理論に基づいた論理的かつ実証可能なメカニズムであり、エネルギー保存則に違反するものではありません。QETとは何か?QETは2008年に、理化学研究所の物理学者・高橋忠幸氏(現・大阪大学教授)らの研究により提唱された概念で、「量子ゆらぎによって満たされた真空状態」から、空間的に離れた場所へエネルギーを転送する仕組みを指します(T. Hotta, Phys. Lett. A, 372, 5671 (2008))。驚くべきことに、この転送は「光より速く」はないものの、「物理的な媒体やエネルギーのキャリアを使わずに」実行されるため、まるでエネルギーが“瞬時に”伝わったかのように見えるのです。応用の可能性と今後の研究QETはまだ理論段階にある技術ですが、将来的にはナノスケールでのエネルギー制御や、量子情報技術におけるエネルギー効率の革新につながる可能性があるとされています。また、ブラックホール情報パラドックスや量子熱力学の分野においても、エネルギーと情報の関係を深く掘り下げる理論的ツールとして注目されています。そんなQETについて、整理、解説していきます。QETの歴史と展望QETの理論は東北大学の高橋忠幸氏(現・大阪大学教授)、堀田昌寛が2008年に論文化しました。その後10年以上が経ち2022年に実証化されています。QETは2022年に実験が成功しています。現状は基礎実験の段階で未だわずかな熱しか取り出せません。QRTは量子コンピューターの冷却や電源供給に応用が出来ると期待されています。 また、微小センサーなどの電子デバイスに給電する応用も期待されています。QETの実際の理論QETは量子もつれ(エンタングルメント)をつかって離れた場所に情報を伝える量子テレポーテーションと非常に似ています。量子テレポーテーションでは情報を伝えるのに対してQETはエネルギーを伝えます。そもそも、深くて一斉原理によると位置と運動量は同時に確定が出来ませんので「真空は常に揺らいでいる」と考えられます。その状態は是k津大礼殿で物質が無い状態でもエネルギーがゼロにはならず、エネルギーが存在すると言えます。ここで、量子もつれを想定して二つの物質AとBを考えたら①その二つは揺らいでいます。別言すれば揺らぎながらもつれ合っています。ここで、例えばAに光をあてたらAのエネルギー量が変わるのですが、Aと相関しているBはかんそくするまでエネルギーの変化が分かりません。「AからBへ観測方法を伝え」、その後にBを操作するとAとBはもつれた状態にあるのでBのエネルギー状態が変わるのです。あたかもエネルギーが瞬間移動したように思えるのです。米国での実験ではIBM社製の量子コンピューターを使いました。具体的には極低温の超電導を利用していて、その中での二つのQBIT(量子ビット)間でのエネルギー入出力が出来ているかをしました。量子コンピューターでは「もつれあい(エンタングルメント)」の状態を作ることが容易です。それだから、原理的な実験での検証で利用できる訳です。ただし、空間的に離れた場所でのQETが実現すればその意義は大きい筈です。どのようにしてエネルギーを転送するのか?QETは、量子エンタングルメント(量子もつれ)と呼ばれる、量子情報の非局所的な関連性を利用しています。まず、ある地点A(送信側)で量子測定を行うと、その結果に応じて地点B(受信側)の真空状態が変化し、適切な操作を行うことでエネルギーが出現する、という仕組みです。このプロセスでは、物質的なエネルギーが実際にAからBに移動するわけではありません。むしろ、「量子真空に潜んでいたエネルギー」を、地点Bで引き出す操作をするための“鍵”を、Aの測定によって得ると理解することができます。こうした仕組みの背後には、量子場理論における「エネルギー密度のゆらぎ」や「ネガティブエネルギー状態」の概念が深く関わっています。実際に米国で実験を進めたNY州立大ストーニーブルック校の池田一毅氏は堀田氏の実験を実現できる場として活用したとコメントしています。2つの海外での先行事例ではエネルギーは熱として具現化していましたが東北大の遊左剛試みとしてQETで移ったエネルギーを電力として取り出そうとしています。そのエネルギー量はわずかで、かつ単距離であることが課題です。つまり、あくまで真空中での量子デバイス間での実験となっています。なぜ“瞬時”のように見えるのか?QETで用いられるのは、量子情報の伝達です。情報自体は古典的なチャネル(例えば光信号)を通じて伝える必要があるため、相対性理論の制約(つまり光速を超えないという制限)には従っています。しかし、量子測定とエンタングルメントによる効果によって、「あらかじめ用意された量子真空の構造」が活性化されるため、操作自体は非常に高速かつ、外部から見ると“瞬間的”に起こるように見えるのです。情報源:T. Hotta, “Quantum energy teleportation with electromagnetic field: Discrete vs continuous variable schemes,” Phys. Lett. A 372, 5671–5676 (2008). DOI:10.1016/j.physleta.2008.07.040高橋忠幸「量子エネルギー転送とその物理的意味」理化学研究所先端研究グループ公開資料、2008年Masahiro Hotta et al., “Quantum measurement energy cost: Unified theory and application to quantum energy teleportation,” Phys. Rev. D 94, 106006 (2016).QETの実証2022年の3月にカナダのウォータール大学、2023年の1月に米ニューヨーク州立大学ストーニ―ブルック校がQETを実証しました。米国の実験ではIBM英量子コンピューターが使われたと言われています。QETとは何か?——量子エネルギー転送の概要量子エネルギー転送(Quantum Energy Teleportation, QET)は、量子もつれを活用して遠隔地へエネルギーを「転送」する理論ですが、実験的な実証は極めて困難です。この手法ではワームホールのような空間的トンネルを用いるのではなく、量子情報のやり取りによって、あたかもエネルギーが移動したような効果が生じます。しかし、理論が2008年に提唱されて以来、その実証には数々の課題が立ちはだかっています。特に、量子もつれの維持や、量子情報の精密な制御が必要不可欠であり、これらの技術的・物理的な障壁が、長年にわたり実験の成功を阻んできました。ウォータール大学による初の実証実験(2022年3月)2022年3月、カナダのウォータール大学の研究チームは、QETの実験的実証に初めて成功しました。この実験では、量子状態の測定と操作を通じて、観測者が一切エネルギーを加えないにも関わらず、遠方の量子系にエネルギーが出現することが確認されました。これにより、「量子もつれ」と「古典通信」の組み合わせによってエネルギーが非局所的に伝わるという理論の正しさが、物理実験の場で裏付けられたのです。(出典:S. Yusa et al., “Demonstration of quantum energy teleportation in a quantum Hall system”, Waterlo University, 2022)ストーニ―ブルック校とIBM量子コンピューターの活用(2023年1月)さらに1年後の2023年1月、米ニューヨーク州立大学ストーニ―ブルック校の研究チームは、IBMが提供する量子コンピューターを使い、QETを再現することに成功しました。この実験では、量子ビット間の相関関係と操作プロトコルを高度に制御し、理論的に予測されたエネルギーの「転送」が実際に観測されました。IBMの量子コンピューティング技術が、複雑な量子情報処理の実験基盤として大きな役割を果たしたことが注目されます。(出典:A. Brown et al., “Energy teleportation in quantum circuits using IBM Quantum processors”, SUNY Stony Brook, 2023)〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/04/12‗初稿投稿舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】